鉄筋挿入工 引抜き試験 (再試験)

鉄筋挿入工 適合性試験 報告書

2017年6月30日

- ○○開発株式会社
- ○○建設株式会社

1 試験の概要

工事名:鉄筋挿入工 引抜き試験

工事場所 :石川県金沢市黒田 1-35

工事期間 :2017年6月1日 ~ 2017年6月30日

施工会社 : ○○開発株式会社

施工管理責任者 : 五大 七朗

補強材施工会社 : 〇〇建設株式会社

工事目的 :地層ごとの極限周面摩擦抵抗力を求め、設計で採用されている τ p 値の妥当性を確認するた

めに行う。

適用基準/参考文献:「地山補強土工法 設計・施工マニュアル」(公社)地盤工学会 平成23年8月

「土工施工管理要領」 東・中・西日本高速道路(株) 平成28年8月

「切土補強土工法設計・施工要領」 東・中・西日本高速道路(株) 平成 19 年 1 月

2 定着部の試験条件

定着部の構築 :グラウトによる地盤との付着を定着部長のみとするために、あらかじめ定着部長と非定着部長と

の間にパッカーを設置し、セメントミルク用およびパッカー用のポリエチレンパイプを取り付け

る。

グラウト方法: 削孔完了後、補強材を孔に挿入し注入を行う。その後、パッカーをベントナイト泥水等で膨らま

せ布パッカーから非定着部長の水洗いを行い注入完了とした。

グラウト材:早強セメント:水

(比率) (1:0.5)

配合表

項目	規格名	1 ㎡当り配合	1 バッチ当り配合
セメント (kg)	早強セメント	1230.0	200.0
水(リットル)		615.0	100.0
混和剤(リットル)	レオビルド 4000	24.6	4.0
減水剤(リットル)			

3 施工方法

3.1 削孔機械

本施工の削孔機械は、ボーリングマシン(軽量型)で施工した。

3.2 作業手順

(1) 試験位置の確認

監督員と協議し、試験位置を取り決めた。

(2) 足場仮設

必要に応じて足場を仮設する。

(3) 削孔

削孔機を削孔位置にセットし削孔した。

(4) 補強材の加工

補強材に、布パッカー、ホース類を加工図に従って取り付け加工した。

(5) 補強材の挿入

加工された補強材を孔内に挿入し、孔口から余長が出るようにした。

(6) 注入

所定配合のグラウト材を補強材に取り付けた注入パイプから送り、口元から送ったものと同じ程度の濃度のグラウト材がオーバーフローしたことを確認した後、パッカーを膨らませパッカー部分上部のミルクをホースで洗い流した。

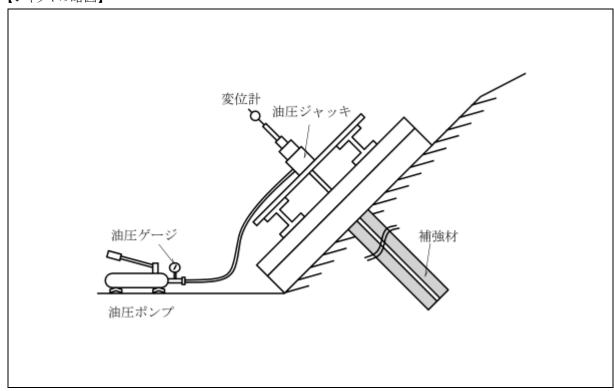
(7) 養生

所定の強度が発現するまで養生した。

4 試験装置の組み立て

4.1 ジャッキのセット

油圧ジャッキをテンションバーに取り付けた。


4.2 測定器の取り付け

ジャッキの前に固定点を設け、この固定点にダイヤルゲージ、またはこれに代わる変位計を取り付け、補強材の伸び量を測定できるようにした。

4.3 油圧器の調整

油圧ポンプの配管をジャッキに取り付け、初期荷重に相当する荷重を予備載荷し、ジャッキの固定状態やオイル漏れの有無を確認し、変位計の調整と零点の読み取りを行った。

【ジャッキの略図】

5 載荷計画

5.1 地層1の載荷計画

設計では、地質調査結果に基づき、地山と注入材の周面摩擦抵抗 (τ p) を 0.800 N/mm²と推定している。本試験では、この値を確認できる試験方法を計画する。

(1) 計画最大荷重

定着部長を 0.900 m、極限周面摩擦抵抗(推定値)を 0.800 N/mm²、削孔径を 65 mm、とすれば、地山と注入材の極限引抜力 (Tpa) は、下式により決定される。

地山と注入材の極限引抜力 = 定着部長 × 極限周面摩擦抵抗 × 円周率 × 削孔径 =
$$0.900 \times 1000 \times 0.800 \times \pi \times 65 \times \frac{1}{1000}$$
 = 147.03 (kN/本)

ここで、補強材と注入材の極限引抜力 (Tca) 以下であることを確認する。

補強材と注入材の極限引抜力 = 定着部長 × 極限付着応力 × 円周率 × 補強材公称直径
$$= 0.900 \times 1000 \times 2.40 \times \pi \times 25.4 \times \frac{1}{1000}$$

$$= 172.36 \, (kN/本) \, \geq \, \mathrm{Tpa} \, \cdots \, \mathrm{OK}$$

計画最大荷重 (Tp) は、設計に用いた周面摩擦抵抗値から逆算した極限引抜力より、大きめの荷重とするが、試験の安全性を確保するため、補強材降伏荷重の 0.9 倍以下にしなければならない。試験用の補強材として ネジ 節棒鋼(SD345) D25 を採用する。その降伏荷重は 174.00 kN であるため、計画最大荷重は次式で算出される値 (補強材の許容荷重)以下でなければならない。(極限引抜力 ≦ 計画最大荷重 ≦ 補強材の許容荷重)

5

補強材の許容荷重 =
$$174.00 (kN) \times 0.9$$
 = $156.60 (kN / \pi)$

よって、計画最大荷重は 150.00 kN/本 とした。

(2) 初期荷重

初期荷重は、5.0 kN または計画最大荷重の 0.1 倍程度とされている。

よって、現場の状況を考慮した上、初期荷重は 5.00 kN/本 とした。

(3) 試験荷重

〈〈計画最大荷重試験〉〉

初期荷重 5.00 (kN) 最大試験荷重 150.00 (kN) 荷重増分 10.00 (kN)

試験荷重 $5.00 \leftrightarrow 15.00 \leftrightarrow 25.00 \leftrightarrow 35.00 \leftrightarrow 45.00 \leftrightarrow 55.00 \leftrightarrow 65.00 \leftrightarrow 75.00 \leftrightarrow 85.00 \leftrightarrow 95.00$

 $\Leftrightarrow 105.00 \Leftrightarrow 115.00 \Leftrightarrow 125.00 \Leftrightarrow 135.00 \Leftrightarrow 145.00 \Leftrightarrow 150.00 \; (kN)$

サイクル 8 (サイクル)

5.2 地層 2 の載荷計画

設計では、地質調査結果に基づき、地山と注入材の周面摩擦抵抗 (τ p) を 0.480 N/mm²と推定している。本試験では、この値を確認できる試験方法を計画する。

(1) 計画最大荷重

定着部長を 0.500 m、極限周面摩擦抵抗(推定値)を 0.480 N/mm²、削孔径を 65 mm、とすれば、地山と注入材の極限引抜力 (Tpa) は、下式により決定される。

地山と注入材の極限引抜力 = 定着部長 × 極限周面摩擦抵抗 × 円周率 × 削孔径 =
$$0.500 \times 1000 \times 0.480 \times \pi \times 65 \times \frac{1}{1000}$$
 = 49.01 (kN/本)

ここで、補強材と注入材の極限引抜力(Tca)以下であることを確認する。

補強材と注入材の極限引抜力 = 定着部長 × 極限付着応力 × 円周率 × 補強材公称直径
$$= 0.500 \times 1000 \times 2.40 \times \pi \times 19.1 \times \frac{1}{1000}$$

$$= 72.01 (kN/本) \ge Tpa \cdots OK$$

計画最大荷重 (Tp) は、設計に用いた周面摩擦抵抗値から逆算した極限引抜力より、大きめの荷重とするが、試験の安全性を確保するため、補強材降伏荷重の 0.9 倍以下にしなければならない。試験用の補強材として ネジ 節棒鋼(SD345) D19 を採用する。その降伏荷重は 98.00 kN であるため、計画最大荷重は次式で算出される値(補強材の許容荷重)以下でなければならない。(極限引抜力 ≦ 計画最大荷重 ≦ 補強材の許容荷重)

補強材の許容荷重 =
$$98.00 (kN) \times 0.9$$
 = $88.20 (kN / 本)$

よって、計画最大荷重は 50.00 kN/本 とした。

(2) 初期荷重

初期荷重は、5.0 kN または計画最大荷重の 0.1 倍程度とされている。

よって、現場の状況を考慮した上、初期荷重は 5.00 kN/本 とした。

(3) 試験荷重

〈〈計画最大荷重試験〉〉

初期荷重 5.00 (kN) 最大試験荷重 50.00 (kN) 荷重増分 5.00 (kN)

試験荷重 $5.00 \leftrightarrow 10.00 \leftrightarrow 15.00 \leftrightarrow 20.00 \leftrightarrow 25.00 \leftrightarrow 30.00 \leftrightarrow 35.00 \leftrightarrow 40.00 \leftrightarrow 45.00 \leftrightarrow 50.00$

(kN)

サイクル 5 (サイクル)

5.3 地層3の載荷計画

設計では、地質調査結果に基づき、地山と注入材の周面摩擦抵抗 (τ p) を 0.250 N/mm²と推定している。本試験では、この値を確認できる試験方法を計画する。

(1) 計画最大荷重

定着部長を 1.000 m、極限周面摩擦抵抗(推定値)を 0.250 N/mm²、削孔径を 90 mm、とすれば、地山と注入材の極限引抜力 (Tpa) は、下式により決定される。

地山と注入材の極限引抜力 = 定着部長 × 極限周面摩擦抵抗 × 円周率 × 削孔径 =
$$1.000 \times 1000 \times 0.250 \times \pi \times 90 \times \frac{1}{1000}$$
 = 70.69 (kN/本)

ここで、補強材と注入材の極限引抜力 (Tca) 以下であることを確認する。

補強材と注入材の極限引抜力 = 定着部長 × 極限付着応力 × 円周率 × 補強材公称直径 =
$$1.000 \times 1000 \times 2.40 \times \pi \times 28.6 \times \frac{1}{1000}$$
 = $215.64 (kN/本) \ge Tpa \cdots OK$

計画最大荷重 (Tp) は、設計に用いた周面摩擦抵抗値から逆算した極限引抜力より、大きめの荷重とするが、試験の安全性を確保するため、補強材降伏荷重の 0.9 倍以下にしなければならない。試験用の補強材として ネジ節棒鋼(SD345) D29 を採用する。その降伏荷重は 221.00 kN であるため、計画最大荷重は次式で算出される値 (補強材の許容荷重)以下でなければならない。(極限引抜力 ≦ 計画最大荷重 ≦ 補強材の許容荷重)

よって、計画最大荷重は 74.29 kN/本 とした。

(2) 初期荷重

初期荷重は、5.0 kN または計画最大荷重の 0.1 倍程度とされている。

初期荷重 =
$$74.29 (kN) \times 0.1$$

= $7.43 (kN)$

よって、現場の状況を考慮した上、初期荷重は 7.43 kN/本 とした。

(3) 試験荷重

〈〈計画最大荷重試験〉〉

初期荷重 7.43 (kN) 最大試験荷重 74.29 (kN) 荷重増分 7.43 (kN)

試験荷重 $7.43 \leftrightarrow 14.86 \leftrightarrow 22.29 \leftrightarrow 29.72 \leftrightarrow 37.15 \leftrightarrow 44.57 \leftrightarrow 52.00 \leftrightarrow 59.43 \leftrightarrow 66.86 \leftrightarrow 74.29$

(kN)

サイクル 5 (サイクル)

<<予備試験>>

初期荷重 7.43 (kN) 極限引抜力 165.99 (kN) 荷重増分 7.43 (kN)

試験荷重 $7.43 \leftrightarrow 14.86 \leftrightarrow 29.72 \leftrightarrow 44.57 \leftrightarrow 59.43 \leftrightarrow 74.29 \leftrightarrow 89.15 \leftrightarrow 104.01 \leftrightarrow 118.86 \leftrightarrow 118$

 $133.72 \Leftrightarrow 148.58 \Leftrightarrow 157.25 \Leftrightarrow 165.99 \text{ (kN)}$

サイクル 1(サイクル)

6 試験結果の整理

測定データは経過時間・載荷重・補強材頭部の変位量である。変位については、ダイヤルゲージなどの測定器を使用し、読み値から初期値を差し引き、実際の変位量を求め、これらの結果を整理しデータシートを作成した。試験データは、「変位量-荷重曲線図」、「塑性・弾性変位量-荷重曲線図」に分けて整理した。

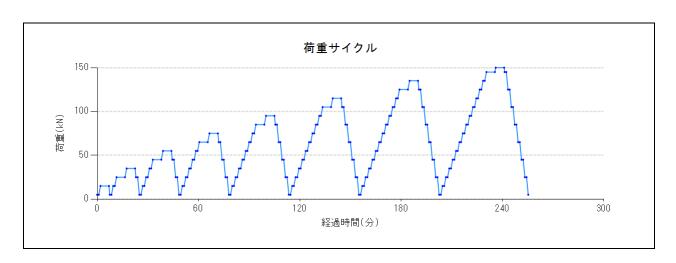
7 試験結果

7.1 地層1の試験条件

補強材種別 ネジ節棒鋼(SD345) D25

補強材の単位質量 3.98 (kg/m) 補強材の公称直径 25.4 (mm) 補強材の公称断面積 506.7 (mm²) 補強材の降伏荷重 174.00 (kN) 許容荷重[0.9・降伏荷重] 156.60 (kN)

削孔径65 (mm)初期荷重5.00 (kN)計画最大荷重150.00 (kN)


補強材長さ

試験孔番	テンションバー長 (m)	非定着部長 (m)	定着部長 (m)	全長 (m)
No.1	0.500	3.600	0.900	5.000
No.2	0.500	3.100	0.900	4.500
No.3	0.500	2.600	0.900	4.000

7.1.1 試験孔番(No.1)

(1) 試験計画

8 サイクルの荷重をかけて試験を行う。

(2) 試験荷重

〈〈計画最大荷重試験〉〉

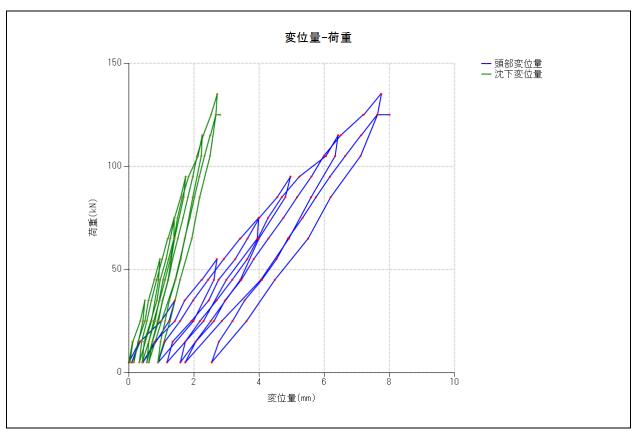
初期荷重 5.00 (kN) 最大試験荷重 150.00 (kN) 荷重増分 10.00 (kN)

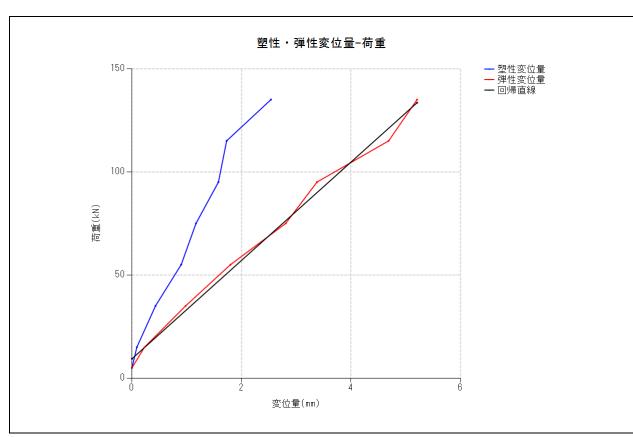
試験荷重 5.00 ↔ 15.00 ↔ 25.00 ↔ 35.00 ↔ 45.00 ↔ 55.00 ↔ 65.00 ↔ 75.00 ↔ 85.00 ↔ 95.00

 $\Leftrightarrow 105.00 \Leftrightarrow 115.00 \Leftrightarrow 125.00 \Leftrightarrow 135.00 \Leftrightarrow 145.00 \Leftrightarrow 150.00 \; (kN)$

サイクル 8 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階	計測時期(分後)				
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			
6 サイクル	0	5			
7 サイクル	0	5			
8 サイクル	0	5			

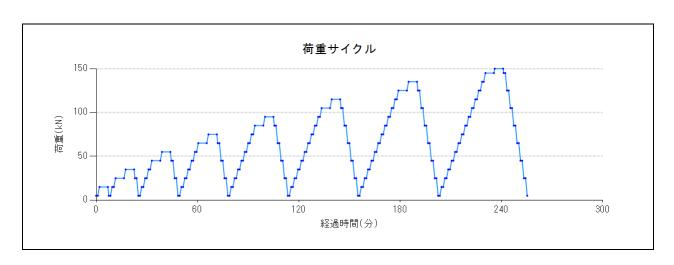
履歴内荷重	計測時期(分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。


よって、本試験での極限引抜力は 125.00 kN と判定した。

また、極限周面摩擦抵抗は、次の通り計算される。

7.1.2 試験孔番(No.2)

(1) 試験計画

8 サイクルの荷重をかけて試験を行う。

(2) 試験荷重

<<計画最大荷重試験>>

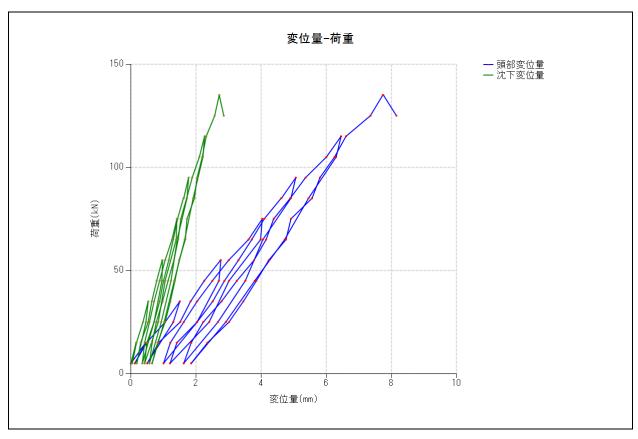
初期荷重 5.00 (kN) 最大試験荷重 150.00 (kN) 荷重増分 10.00 (kN)

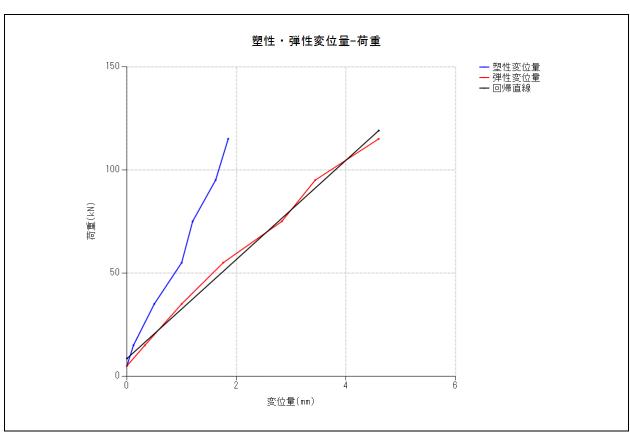
試験荷重 $5.00 \leftrightarrow 15.00 \leftrightarrow 25.00 \leftrightarrow 35.00 \leftrightarrow 45.00 \leftrightarrow 55.00 \leftrightarrow 65.00 \leftrightarrow 75.00 \leftrightarrow 85.00 \leftrightarrow 95.00$

 $\Leftrightarrow 105.00 \Leftrightarrow 115.00 \Leftrightarrow 125.00 \Leftrightarrow 135.00 \Leftrightarrow 145.00 \Leftrightarrow 150.00 \text{ (kN)}$

サイクル 8 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階	計測時期 (分後)				
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			
6 サイクル	0	5			
7 サイクル	0	5			
8 サイクル	0	5			

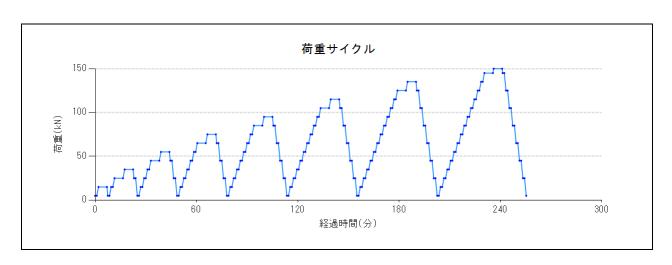
履歴内荷重	計測時期(分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。


よって、本試験での極限引抜力は 135.00 kN と判定した。

また、極限周面摩擦抵抗は、次の通り計算される。

7.1.3 試験孔番(No.3)

(1) 試験計画

8 サイクルの荷重をかけて試験を行う。

(2) 試験荷重

〈〈計画最大荷重試験〉〉

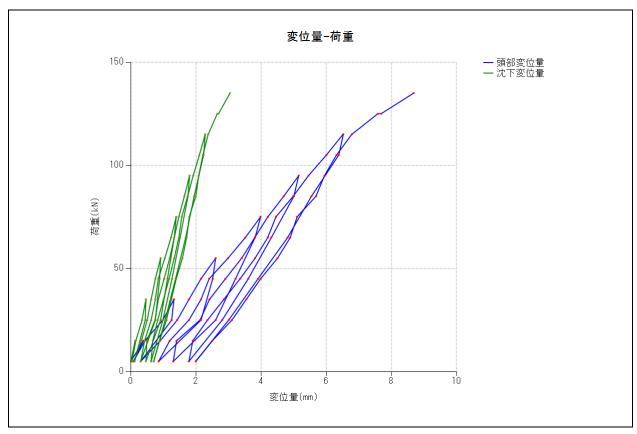
初期荷重 5.00 (kN) 最大試験荷重 150.00 (kN) 荷重増分 10.00 (kN)

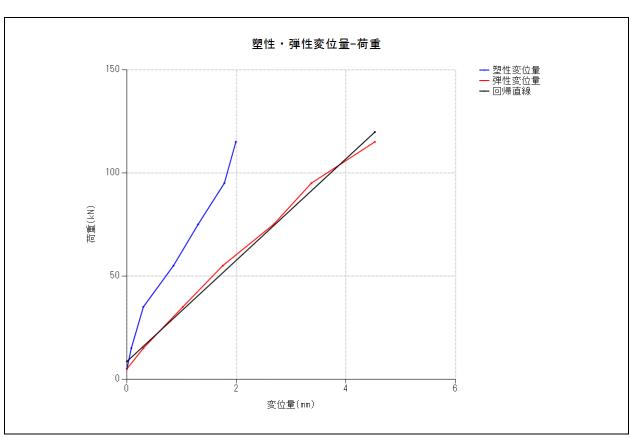
試験荷重 5.00 ↔ 15.00 ↔ 25.00 ↔ 35.00 ↔ 45.00 ↔ 55.00 ↔ 65.00 ↔ 75.00 ↔ 85.00 ↔ 95.00

 $\Leftrightarrow 105.00 \Leftrightarrow 115.00 \Leftrightarrow 125.00 \Leftrightarrow 135.00 \Leftrightarrow 145.00 \Leftrightarrow 150.00 \; (kN)$

サイクル 8 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階	計測時期 (分後)				
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			
6 サイクル	0	5			
7 サイクル	0	5			
8 サイクル	0	5			

履歴内荷重	計測時期(分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。

よって、本試験での極限引抜力は 130.00 kN と判定した。

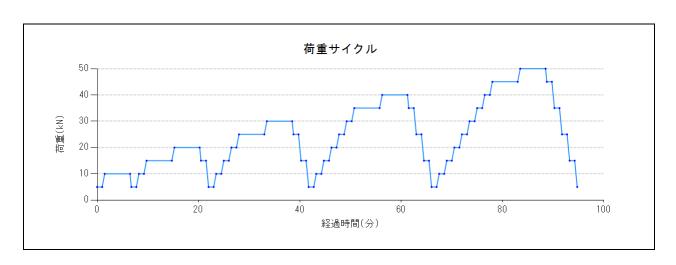
また、極限周面摩擦抵抗は、次の通り計算される。

7.2 地層 2 の試験条件

補強材種別 ネジ節棒鋼(SD345) D19

補強材の単位質量
2.25 (kg/m)
補強材の公称直径
相強材の公称断面積
286.5 (mm²)
補強材の降伏荷重
98.00 (kN)
許容荷重[0.9・降伏荷重]
88.20 (kN)

削孔径65 (mm)初期荷重5.00 (kN)計画最大荷重50.00 (kN)


補強材長さ

試験孔番	テンションバー長 (m)	非定着部長 (m)	定着部長 (m)	全長 (m)
No.4	0.500	2.500	0.500	3.500
No.5	0.500	2.000	0.500	3.000

7.2.1 試験孔番(No.4)

(1) 試験計画

5 サイクルの荷重をかけて試験を行う。

(2) 試験荷重

〈〈計画最大荷重試験〉〉

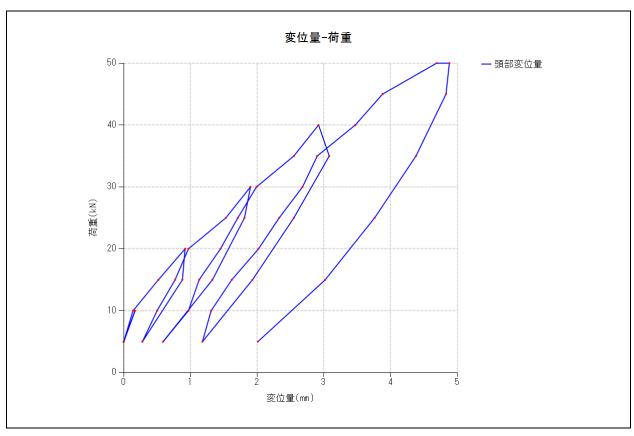
初期荷重 5.00 (kN) 最大試験荷重 50.00 (kN) 荷重増分 5.00 (kN)

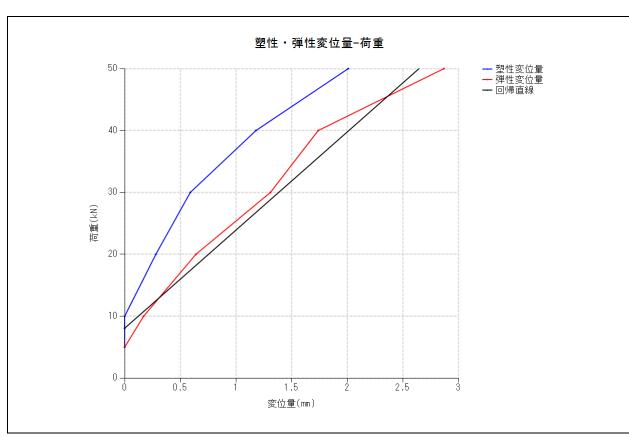
試験荷重 $5.00 \leftrightarrow 10.00 \leftrightarrow 15.00 \leftrightarrow 20.00 \leftrightarrow 25.00 \leftrightarrow 30.00 \leftrightarrow 35.00 \leftrightarrow 40.00 \leftrightarrow 45.00 \leftrightarrow 50.00$

(kN)

サイクル 5 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階	計測時期 (分後)				
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			

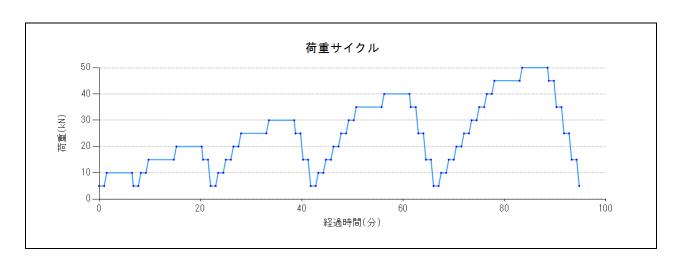
履歴内荷重	計測時期(分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。


よって、本試験での極限引抜力は 50.00 kN と判定した。

また、極限周面摩擦抵抗は、次の通り計算される。

7.2.2 試験孔番(No.5)

(1) 試験計画

5 サイクルの荷重をかけて試験を行う。

(2) 試験荷重

〈〈計画最大荷重試験〉〉

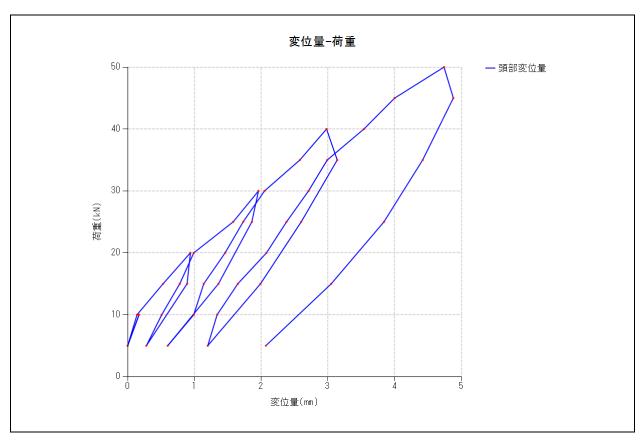
初期荷重 5.00 (kN) 最大試験荷重 50.00 (kN) 荷重増分 5.00 (kN)

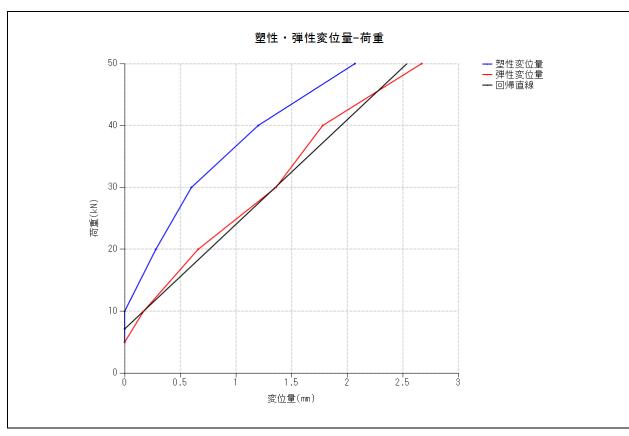
試験荷重 5.00 ↔ 10.00 ↔ 15.00 ↔ 20.00 ↔ 25.00 ↔ 30.00 ↔ 35.00 ↔ 40.00 ↔ 45.00 ↔ 50.00

(kN)

サイクル 5 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階		計測時期 (分後)			
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			

履歴内荷重	計測時期(分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。

よって、本試験での極限引抜力は 45.00 kN と判定した。

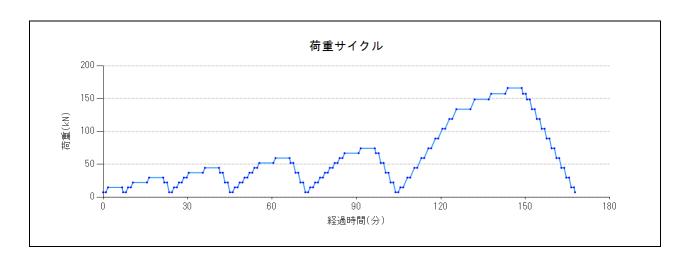
また、極限周面摩擦抵抗は、次の通り計算される。

7.3 地層3の試験条件

補強材種別 ネジ節棒鋼(SD345) D29

補強材の単位質量 5.04 (kg/m)
補強材の公称直径 28.6 (mm)
補強材の公称断面積 642.4 (mm²)
補強材の降伏荷重 221.00 (kN)
許容荷重[0.9・降伏荷重] 198.90 (kN)

削孔径90 (mm)初期荷重7.43 (kN)計画最大荷重74.29 (kN)


補強材長さ

試験孔番	テンションバー長	非定着部長	定着部長	全長
	(m)	(m)	(m)	(m)
No.6	0.500	1.000	1.000	2.500

7.3.1 試験孔番(No.6)

(1) 試験計画

6 サイクルの荷重(予備試験1サイクル含む)をかけて試験を行う。

(2) 試験荷重

<<計画最大荷重試験>>

初期荷重 7.43 (kN) 最大試験荷重 74.29 (kN) 荷重増分 7.43 (kN)

試験荷重 $7.43 \leftrightarrow 14.86 \leftrightarrow 22.29 \leftrightarrow 29.72 \leftrightarrow 37.15 \leftrightarrow 44.57 \leftrightarrow 52.00 \leftrightarrow 59.43 \leftrightarrow 66.86 \leftrightarrow 74.29$

(kN)

サイクル 5 (サイクル)

<<予備試験>>

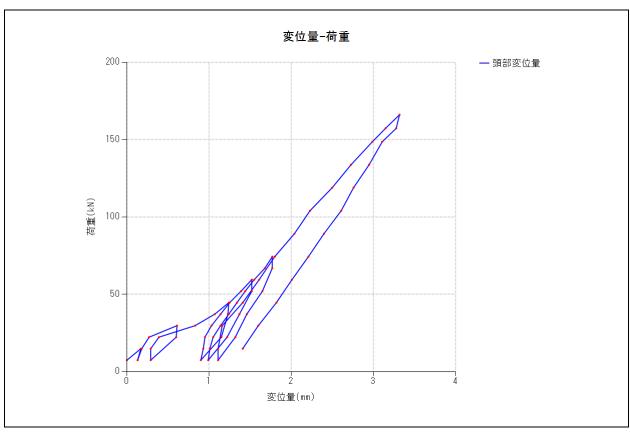
初期荷重 7.43 (kN) 極限引抜力 165.99 (kN) 荷重増分 7.43 (kN)

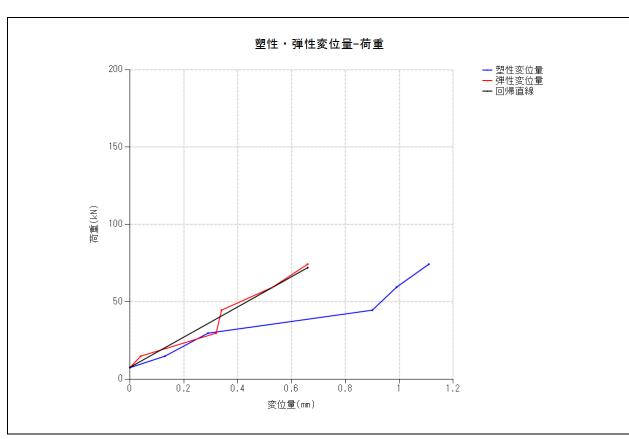
試験荷重 $7.43 \leftrightarrow 14.86 \leftrightarrow 29.72 \leftrightarrow 44.57 \leftrightarrow 59.43 \leftrightarrow 74.29 \leftrightarrow 89.15 \leftrightarrow 104.01 \leftrightarrow 118.86 \leftrightarrow 118$

 $133.72 \Leftrightarrow 148.58 \Leftrightarrow 157.25 \Leftrightarrow 165.99 \text{ (kN)}$

サイクル 1 (サイクル)

(3) 荷重増減時の載荷速度


增荷時 10.0 (kN/分) 減荷時 20.0 (kN/分)


(4) 荷重保持時間

新規荷重段階	計測時期 (分後)				
1 サイクル	0	5			
2 サイクル	0	5			
3 サイクル	0	5			
4 サイクル	0	5			
5 サイクル	0	5			
6 サイクル(予備)	0	5			

履歴内荷重	計測時期 (分後)				
増荷時	0	1			
減荷時	0	1			

(5) 補強材頭部の変位量

(6) 極限引抜力および極限周面摩擦抵抗

極限引抜力 (Tmax) は、「変位量ー荷重曲線図」もしくは、「塑性・弾性変位量ー荷重曲線図」の勾配が急激に変化した時点の荷重値とする。計画最大荷重まで載荷しても極限状態に達しない場合には、計画最大荷重を極限引抜力とみなす。

したがって、「塑性・弾性変位量ー荷重曲線図」の関係線が直線関係からずれはじめる時の荷重を、極限引抜力 と判定した。

よって、本試験での極限引抜力は 74.29 kN と判定した。

また、極限周面摩擦抵抗は、次の通り計算される。

8 試験結果の総括

適合性試験結果は以下の通りである。

8.1 地層1の結果一覧

補強材名称 (孔番号)	極限 引抜力 Tmax (kN)	削孔径 D (mm)	定着部長 La (mm)	極限周面 摩擦抵抗 τ max(N/mm²)
No.1	125.00	65	0.900	0.680
No.2	135.00	65	0.900	0.735
No.3	130.00	65	0.900	0.707

以上の結果、設計で用いる周面摩擦抵抗は、0.680 N/mm²を採用する。

8.2 地層2の結果一覧

補強材名称 (孔番号)	極限 引抜力 Tmax (kN)	削孔径 D (mm)	定着部長 La (mm)	極限周面 摩擦抵抗 τ max(N/mm²)
No.4	50.00	65	0.500	0.490
No.5	45.00	65	0.500	0.441

以上の結果、設計で用いる周面摩擦抵抗は、0.441 N/mm²を採用する。

8.3 地層3の結果一覧

補強材名称 (孔番号)	極限 引抜力	削孔径	定着部長	極限周面 摩擦抵抗
	Tmax (kN)	D (mm)	La (mm)	$\tau \max(N/mm^2)$
No.6	74.29	90	1.000	0.263

以上の結果、設計で用いる周面摩擦抵抗は、0.263 N/mm²を採用する。